Perbandingan Metode Naive Bayes dan Support Vector Machine Untuk Analisis Sentimen Pengguna X Terhadap Penyakit Virus HMPV di Indonesia

Authors

  • Muhamad Hartawan Program Studi Teknik Informatika, Fakultas Teknologi dan Informatika, Universitas Aisyah Pringsewu, Indonesia
  • Panji Bintoro Program Studi Rekayasa Perangkat Lunak, Fakultas Teknologi dan Informatika, Universitas Aisyah Pringsewu, Indonesia
  • Hafsah Mukaromah Program Studi Farmasi, Fakultas Kesehatan, Universitas Aisyah Pringsewu, Indonesia
  • Agus Wantoro Program Studi Teknik Informatika, Fakultas Teknologi dan Informatika, Universitas Aisyah Pringsewu, Indonesia

Keywords:

Sentiment Analysis, HMPV, Naïve Bayes, SVM, IndoBERT

Abstract

Human Metapneumovirus (HMPV) is a respiratory virus from the Pneumoviridae family that can infect both the upper and lower respiratory tract. Although no official cases have been identified in Indonesia, the spread of HMPV in several countries has raised public concern. Social media, particularly platform X (formerly Twitter), has become a primary platform for the public to express opinions, information, and discussions related to health issues. Sentiment analysis is needed to understand public perceptions, thus providing a basis for the government and medical professionals to formulate more appropriate communication strategies. This study aims to classify public sentiment regarding HMPV into positive, negative, and neutral categories and to compare the performance of two text classification methods: Naïve Bayes and Support Vector Machine (SVM). The research methodology uses the CRISP-DM framework with the following stages: data collection of 1,476 tweets using keywords related to HMPV, text preprocessing (cleaning, case folding, tokenizing, filtering, stemming), automatic labeling using IndoBERT, data balancing through resampling, and feature extraction with TF-IDF. The data was then split into training-test ratios (90:10, 80:20, 70:30, 60:40), followed by modeling and evaluation using a confusion matrix, accuracy, precision, recall, and F1-score. The results showed that SVM outperformed Naïve Bayes, with higher accuracy and F1-score in almost all data split scenarios. These findings confirm that SVM is superior in analyzing the sentiment of Indonesian-language text on social media. This research is expected to support public opinion monitoring, strengthen health communication strategies, and serve as a reference for further research on other health issues.

Downloads

Download data is not yet available.

References

N. M. S. Gálvez et al., “Host components that modulate the disease caused by hmpv,” Viruses, vol. 13, no. 3, pp. 1–21, 2021, doi: 10.3390/v13030519.

W. Ji et al., “Clinical and epidemiological characteristics of 96 pediatric human metapneumovirus infections in Henan, China after COVID-19 pandemic: a retrospective analysis,” Virol. J., vol. 21, no. 1, pp. 1–14, 2024, doi: 10.1186/s12985-024-02376-0.

WHO, “Trends of acute respiratory infection, including human metapneumovirus, in the Northern Hemisphere,” WHO. Accessed: Jan. 09, 2025. [Online]. Available: https://www.who.int/emergencies/disease-outbreak-news/item/2025-DON550

Kemenkes RI, “Wabah Virus HMPV Merebak di China, Kemenkes Imbau Publik untuk Waspada,” kemenkes. Accessed: Jan. 09, 2025. [Online]. Available: https://kemkes.go.id/id/Wabah-Virus-HMPV-Merebak-di-China, Kemenkes-Imbau-Publik-untuk-Waspada

ALODOKTER, “HMPV, Ketahui Gejala, Penyebab, dan Pencegahannya.” Accessed: Mar. 12, 2025. [Online]. Available: https://www.alodokter.com/hmpv-ketahui-gejala-penyebab-dan-pencegahannya

X. Xia, X. Chen, S. Wang, X. Zhang, H. Cai, and J. Yu, “Clinical epidemiological features of hMPV infection in children with acute respiratory tract infection,” Rev. Psiquiatr. Clin., vol. 50, no. 6, pp. 78–84, 2023, doi: 10.15761/0101-60830000000711.

A. Wafda, “Aspect-Based Sentiment Analysis terhadap Cuitan Platform X tentang Kurikulum Merdeka Menggunakan IndoBERT,” 2025, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/55157%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/55157/22917022.pdf?sequence=1

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.

F. Syadid, “Analisis Sentimen Komentar Netizen Terhadap Calon Presiden Indonesia 2019 Dari Twitter Menggunakan Algoritma Term Frequency-Invers Document Frequency (Tf- Idf) Dan Metode Multi Layer Perceptron (Mlp) Neural Network,” Skripsi Univ. Islam Negeri Syarif Hidayatullah Jakarta, p. 72, 2019.

F. N. Hidayat and S. Sugiyono, “Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 2, pp. 665–672, 2023, doi: 10.55338/saintek.v5i2.1359.

S. Wulandari and F. N. Hasan, “Analisis Sentimen Masyarakat Indonesia Terhadap Pengalaman Belanja Thrifting Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 768, 2024, doi: 10.30865/mib.v8i2.7520.

F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 384–393, 2022, doi: 10.26740/jinacs.v3n03.p384-393.

M. W. A. Putra, Susanti, Erlin, and Herwin, “Analisis Sentimen Dompet Elektronik Pada Twitter Menggunakan Metode Naïve Bayes Classifier,” IT J. Res. Dev., vol. 5, no. 1, pp. 72–86, 2020, doi: 10.25299/itjrd.2020.vol5(1).5159.

U. Khairani, V. Mutiawani, and H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 4, pp. 887–894, 2024, doi: 10.25126/jtiik.1148315.

FAHRENDRA KHOIRUL IHTADA, “STUDI PERBANDINGAN METODE EKSTRAKSI FITUR UNTUK TOPIC MODELING BERBASIS ASPEK DAN SENTIMEN ANALISIS PADA ULASAN PRODUK E-COMMERCE,” 2025.

A. Syukron and A. Subekti, “Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit,” J. Inform., vol. 5, no. 2, pp. 175–185, 2018, doi: 10.31311/ji.v5i2.4158.

E. A. Lisangan, A. Gormantara, and R. Y. Carolus, “Implementasi Naive Bayes pada Analisis Sentimen Opini Masyarakat di Twitter Terhadap Kondisi New Normal di Indonesia,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 2, no. 1, pp. 23–32, 2022, doi: 10.24002/konstelasi.v2i1.5609.

N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.

M. Farhan, “ANALISIS PERBANDINGAN PENGARUH VARIASI DATA AUGMENTASI TERHADAP KINERJA MOBILENETV2 DALAM KLASIFIKASI PENYAKIT DAUN TEH,” no. February, pp. 4–6, 2024.

S. Puad, G. Garno, and A. Susilo Yuda Irawan, “Analisis Sentimen Masyarakat Pada Twitter Terhadap Pemilihan Umum 2024 Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1560–1566, 2023, doi: 10.36040/jati.v7i3.6920.

H. P. Doloksaribu and Yusran Timur Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 16, no. 1, pp. 1–11, 2022, doi: 10.47111/jti.v16i1.3747.

Published

2026-02-10