Analisis Sentimen Ulasan Google Maps untuk Layanan Kesehatan Bandar Lampung Menggunakan TF-IDF dan SVM
Analisis Sentimen Ulasan Google Maps untuk Layanan Kesehatan Bandar Lampung Menggunakan TF-IDF dan SVM
Keywords:
Sentiment Analysis, Google Maps, TF-IDF, SVM, Bandar Lampung CityAbstract
The development of digital technology has encouraged the public to utilize digital platforms like Google Maps as a primary medium for conveying experiences and opinions regarding public services, such as healthcare. These public reviews have become a crucial data source for assessing patient satisfaction and identifying service weaknesses. This study aims to analyze public sentiment towards healthcare services in Bandar Lampung City using machine learning. Support Vector Machine (SVM) was chosen as the text classification method, assisted by Term Frequency-Inverse Document Frequency (TF-IDF) weighting for word feature extraction. The research dataset was obtained through web scraping of 2,278 Google Maps reviews, which were then processed through preprocessing, data labeling, feature extraction, and model evaluation stages. The results of this study indicate a dominance of positive sentiment at 72.5% and negative sentiment at 27.5%. The SVM model with TF-IDF successfully achieved an accuracy of 89% with balanced precision, recall, and F1-score values, categorizing it as superior for text sentiment classification. These findings confirm that aspects of healthcare staff friendliness and service quality were positively rated, while administrative flows, drug distribution, and service speed remain areas of concern. This research utilizes Google Maps reviews as real-time data to evaluate healthcare services in Bandar Lampung City, a previously under-researched area. Sentiment analysis based on SVM and TF-IDF can serve as a data-driven evaluation tool to support strategic decision-making by the Bandar Lampung City Health Office in improving the quality of healthcare services.
Downloads
References
Sidabutar, T. G. W. M., & Juardi, D. (2025). Analisis sentimen masyarakat terhadap penggunaan Halodoc sebagai layanan telemedicine di Indonesia. Jurnal Informatika dan Teknik Elektro Terapan, 13(1). https://doi.org/10.23960/jitet.v13i1.5682
Efriyady, D. (2023). Kepuasaan Pasien pada Puskesmas Way Halim Bandar Lampung. Journal of Management and Creative Business, 1(4), 425-439. https://doi.org/10.30640/jmcbus.v1i4.1722
HERIANSA, N. (2024). Analisis Tingkat Kepuasan Pasien Metode Servqual terhadap Mutu Pelayanan Laboratorium di UPT Puskesmas Rawat Inap Way Kandis Bandar Lampung (Doctoral dissertation, POLTEKKES KEMENKES TANJUNGKARANG).
Lesmana, A. V. D., Safira , H., & Lukman , M. (2025). Perbandingan Pelayanan Publik Antara Rumah Sakit Swasta dan Rumah Sakit Negeri di Lampung: Studi Kasus RSUD Abdoel Moeloek dan Rumah Sakit Advent Bandar Lampung. Komsospol, 5(1), 21–27. https://doi.org/10.47637/komsospol.v5i1.1569
Angel, A. C. T., Pranatawijaya, V. H., & Widiatry, W. (2024). Analisis sentimen dan emosi dari ulasan Google Maps untuk layanan rumah sakit di Palangka Raya menggunakan machine learning. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 4(1), 35–49. https://doi.org/10.24002/konstelasi.v4i1.8924
Widagdo, A. S., Qodri, K. N., & Saputro, F. E. N. (2023). Analisis sentimen terhadap pelayanan Kesehatan berdasarkan ulasan Google Maps menggunakan BERT. JURNAL FASILKOM, 13(02), 326-333.
Hokijuliandy, E., Napitupulu, H., & Firdaniza, F. (2023). Analisis sentimen menggunakan metode klasifikasi support vector machine (SVM) dan seleksi fitur Chi-Square. SisInfo: Jurnal Sistem Informasi dan Informatika, 5(2), 40–49. https://doi.org/10.37278/sisinfo.v5i2.670
Arifin, N., Enri, U., & Sulistiyowati, N. (2021). Penerapan algoritma support vector machine (SVM) dengan TF-IDF N-Gram untuk text classification. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 6(2), 129–138. https://doi.org/10.30998/string.v6i2.10133
Sari, R. A. P., Kacung, S., & Santoso, B. (2025). ANALISIS SENTIMEN LAYANAN KESEHATAN BPJS MENGGUNAKAN METODE SVM. Jurnal Informatika Teknologi dan Sains (Jinteks), 7(2), 878-885. https://doi.org/10.51401/jinteks.v7i2.5797
Darwis, D., Pratiwi, E. S., & Pasaribu, A. F. O. (2020). Penerapan Algoritma SVM Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia. Jurnal Ilmiah Edutic: Pendidikan dan Informatika, 7(1), 1-11. https://doi.org/10.21107/edutic.v8i1.8779
Gifari, O. I., Adha, M., Hendrawan, I. R., & Durrand, F. F. S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. Journal of Information Technology, 2(1), 36-40. https://doi.org/10.46229/jifotech.v2i1.330
Pratama, M. R., Handayani, M. R., Yuniarti, W. D., & Umam, K. (2025). Model prediksi sentimen ulasan mobile legends di Google Play Store dan YouTube berbasis pelabelan otomatis roberta dan klasifikasi random forest. JSil Jurnal Sistem Informasi, 12(2), 39–45. https://doi.org/10.30656/jsii.v12i2.10459
Jaya, A. (2023). Analisis Sentimen Pandangan Public Profesi PNS (Pegawai Negeri Sipil) dari Twiter menerapkan indonesian Roberta Base Sentiment Classifier. Indonesian Journal of Data and Science, 4(1), 38-44. https://doi.org/10.56705/ijodas.v4i1.66
Kumar, A., & Wang, J. (2025). Numerical modelling in assisting machine learning for the enhanced condition monitoring of rotors. Results in Engineering, 107250. https://doi.org/10.1016/j.rineng.2025.107250
Yolanda, A. M., & Mulya, R. T. (2024). Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store. VARIANSI: Journal of Statistics and Its application on Teaching and Research, 6(02), 76-83. 10.35580/variansiunm258
HAEKAL, M., & WIBOWO, W. C. (2023). Prediksi kualitas air sungai menggunakan metode pembelajaran mesin: Studi kasus Sungai Ciliwung: Prediction of river water quality using machine learning methods: Ciliwung River case study. Jurnal Teknologi Lingkungan, 24(2), 273-282. https://doi.org/10.55981/jtl.2023.795
Restiani, Y., & Purwadi, J. (2024). Support Vector Machine for Classification: A Mathematical and Scientific Approach in Data Analysis. Jurnal Penelitian Pendidikan IPA, 10(11), 9896-9903. https://doi.org/10.29303/jppipa.v10i11.8122
.jpg)

